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Abstract. A general two-state exponential potential model is investigated and the corresponding
two-channel scattering problem is solved by means of semiclassical theory. The analytical
expression for the non-adiabatic transition matrix yields a unified expression in the repulsive and
previously studied attractive case. The final formulae are expressed in terms of model-independent
quantities, i.e. the contour integrals of adiabatic local momenta. Oscillations of the overall transition
probability below the crossing of diabatic potentials are observed in the case of strong coupling.
The theory is demonstrated to work very well even at energies lower than the diabatic crossing
region. Based on our results the unified theory of non-adiabatic transitions, covering the Landau–
Zener–Stueckelberg and Rozen–Zener–Demkov models in such an energy range, is possible.

1. Introduction

It is well known that non-adiabatic transitions play an important role in various fields of
physics, chemistry and biology [1–3]. Treating them with mathematical rigour has been a
problem challenged for many decades so that a full account of the progress achieved cannot
be given here (see, e.g., [4–7] and references therein).

The most fundamental models of non-adiabatic transitions are classified into the Landau–
Zener–Stueckelberg-type (LZS) curve crossing and the Rozen–Zener–Demkov-type (RZD)
non-crossing problem. Over the last several years, the LZS problems have been solved
completely [6–8], and an efficient and accurate theory has been successfully developed even
for multi-channel curve-crossing problems [9, 10]. On the other hand, the exact analytical
solution of the RZD model was obtained recently by Osherov and Voronin [11]. In addition, the
exact quantum mechanical solution was found for some special exponential potential models
[12, 13]. This remarkable progress encourages our efforts to formulate a unified theory that
would hopefully cover the above-mentioned cases and to give a general formula for the non-
adiabatic transition matrix in terms of integrals along the adiabatic potentials.

Here we are concerned with such an exponential model that the diabatic potentials and
coupling are given by the same exponential function (see equation (2) below). The easier
attractive case was examined in detail previously [14], and thus in this work the main attention
is paid to the semiclassical treatment of the repulsive case. The purpose is to give a derivation
of precise formulae of basic parameters which should be used in Nikitin’s model [1] and which
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has not been known so far. Furthermore, it is confirmed that the non-adiabatic transition matrix
in the exponential model covers both the Landau–Zener (LZ) and the Rozen–Zener-type (RZ)
matrices as limiting cases. Based on these results the unification of LZ and RZ can be made
and will be reported.

This paper is organized as follows. In section 2 we define the exponential model and
review the treatment of the attractive case. In section 3 the total wavefunction for the repulsive
model is obtained by the Wentzel–Kramer–Brillouin-type (WKB) semiclassical methods. In
section 4 the scattering and non-adiabatic transition matrices are given and the validity of
the double-passage formula is demonstrated. The final formulae are expressed in terms of
the model-independent parameters, and are applicable to general potentials. Its accuracy is
demonstrated in section 5 by using various numerical examples. We conclude with remarks
on the future research in section 6. The appendix contains the most mathematical parts of this
paper.

2. Preliminaries

We solve the coupled Schrödinger equations[
− h̄2

2M

d2

dx2
+ V(x)

]
ψ(x) = Eψ(x) (1)

with

ψ =
(

ψ1(x)

ψ2(x)

)

and

V(x) =
(

U1 − V1 exp(−αx) V exp(−αx)
V exp(−αx) U2 − V2 exp(−αx)

)
. (2)

In dimensionless units [E] = h̄2α2(2M)−1 and [x] = α−1, the above equations have the form

−ψ ′′1 (x) + (U1 − V1 exp(−x)− E)ψ1(x) + V exp(−x)ψ2(x) = 0 (3)

and

−ψ ′′2 (x) + (U2 − V2 exp(−x)− E)ψ2(x) + V exp(−x)ψ1(x) = 0.

Without loss of generality we choose U1 > U2. In both attractive (Vi > 0) and repulsive
(Vi < 0) cases we assume that V1V2 > V 2 in order to avoid the case of three asymptotically
open channels. In the adiabatic representation the coupling is localized and the diagonal
adiabatic potentials are given by

u
(a)
1,2(x) = 1

2 (V11 + V22)±
[(

1
2 (V11 − V22)

)2
+ V 2

12

]1/2
(4)

where Vij (x) are the elements of the matrix V(x) in equation (2). The adiabatic wavefunctions
φi(x) (i = 1, 2) obey the transformation,(

φ1(x)

φ2(x)

)
= R(θ(x))

(
ψ1(x)

ψ2(x)

)
(5)

where

R(θ) =
(

cos θ − sin θ

sin θ cos θ

)
with θ(x) = 1

2 arctan

(
2V12(x)

V22(x)− V11(x)

)
(6)
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and θ ∈ [0, π/2]. A new variable ρ defined by

ρ = 2
√
|V | exp

(− 1
2x
)

(7)

and the parameters

µ ≡ 2
√
E − U2 ν ≡ 2

√
E − U1 and βi ≡ Vi

|V | (8)

reduce the coupled differential equations (3) into the following form:[
ρ2 d2

dρ2
+ ρ

d

dρ
+ ν2 + β1ρ

2

]
ψ1 = ρ2ψ2 (9)

and [
ρ2 d2

dρ2
+ ρ

d

dρ
+ µ2 + β2ρ

2

]
ψ2 = ρ2ψ1.

In order to decouple equation (9) we perform the modified Bessel transformation

ψi(ρ) =
∫
C

dp pFi(p)Za(ρp) (10)

where C is a certain contour in the complex p-plane. Za denotes any appropriate kind of
Bessel function (H(1,2)

±iν here) [15], which satisfies[
z2 d2

dz2
+ z

d

dz

]
Za(z) = −

(
z2 + ν2

)
Za(z). (11)

We note that it is necessary to choose appropriate combinations of the Bessel function
Z and the corresponding contour C in equation (10) in order (a) to satisfy the boundary
conditions and (b) to fulfil the conditions imposed on the asymptotic behaviour of Fj (p) by
the Bessel transformation [14]. It suffices to use an appropriate kind of Bessel function for
each independent solution.

Having substituted equation (10) into (9), we can decouple F2(p) from F1(p) as

F2(p) = sgn(V )
(
β1 − p2

)
F1(p). (12)

In the obtained exact differential equation for F1(p) we first cancel F ′1(p) by substituting

f1(p) ≡ √p
(
p2 − a1

) (
p2 − a2

)
F1(p) (13)

where

a1,2 = 1
2 (β1 + β2)∓

√
[ 1

2 (β1 − β2)]2 + 1. (14)

The meaning of |aiV | in equation (14) is nothing but a pre-exponential constant of the ith
adiabatic potential in the classically forbidden region (see equations (4) and (8)). From now
on, we use the semiclassical approximation throughout the text, and where it is mentioned
explicitly, also the high-energy limit. The resulting differential equation for f1(p) is further
reduced to the following semiclassical form (taking µ2, ν2, µ2 − ν2 
 1, i.e. α small, M
large): [

d2

dp2
+ P0(p)

]
f1(p) = 0 (15)
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where

P0(p) ≡ µ2

p2

(
p2 − c1

) (
p2 − c2

)
(
p2 − a1

) (
p2 − a2

) (16)

and the coefficients c1 and c2 are defined as

c1,2 = 1

2

(
β1 + β2

ν2

µ2

)
∓
√[

1

2

(
β1 − β2

ν2

µ2

)]2

+
ν2

µ2
. (17)

At high energies zeros and the poles of P0 in equation (16) merge, i.e.

ci
E→∞−→ ai. (18)

We simplify the formal WKB solution of equation (15)

f
(n)
1 =

1
4
√
P0

exp

(
∓i

∫ p √
P0 dp

)
n = 1, 2 (19)

in the high-energy limit ((U1 − U2)
2E−1  1):√

P0 � ν

p
+ δ1

2p

p2 − a1
+ δ2

2p

p2 − a2
+ O(δ2)

4
√
P0 �

√
µ

p
. (20)

The energy-dependent parameters δ’s in equation (20) are defined in terms of the mixing angle
in the limit of asymptotically forbidden region,

δi � µ
ai − ci

4ai
= 1

2δ (1± cos (2θ(−∞)))

δ = δ1 + δ2 � 1
2 (µ− ν).

(21)

In order to be consistent with the WKB wavefunction in equation (19), we also replace
the Hankel function in equation (10) with its WKB approximation (cf equation (A5) of the
appendix). Then the contour integral of equation (10) contains the phase integral given by

S(ρ, p) =
∫ p √

P0(p) dp −
∫ ρp

√
1 +

ν2

ξ 2
dξ. (22)

The main contribution comes from the saddle points p
†
j (ρ) defined by

∂

∂p
S(ρ, p)

∣∣∣∣
p=p†

j

= 0 (23)

and given explicitly by

(
p

†
j (ρ)

)2
= β1 + β2

2
− ν2 − µ2

2ρ2
±
√(

β1 − β2

2
− µ2 − ν2

2ρ2

)2

+ 1 j = 1, 2. (24)

Because of this ρ–p correspondence the above action simply becomes

S
(
ρ, p

†
j (ρ)

)
=

∫ x √
E − u

(a)
j (x) dx ≡ Sj (ρ). (25)

The procedure in this section defines the approximation which is used to solve the present
exponential model. We cut the complex p-plane along the four branch cuts of (P0)

1/2 chosen
on the imaginary axis(

i
√|cj |, i

√|aj |) (−i
√|aj |, −i

√|cj |) j = 1, 2. (26)
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3. Semiclassical wavefunctions

Since we deal with two coupled differential equations of the second order, we first represent
the total wavefunction as a linear combination of four fundamental solutions given by some,
as yet unknown, contour integrals. Then we evaluate these integrals in the limits x → ∓∞
and determine the four constants of this linear combination. When x lies in the classically
inaccessible region, we obtain two restrictions on these constants because of the decay of
the wavefunction in each adiabatic channel. Evaluating the contour integrals for x →∞, we
obtain the asymptotic form of the wavefunction. In order to obtain the S-matrix we set one more
condition that the total wavefunction is of a form such that the incident wave propagates only
in one channel. Then the last constant is just a multiplicative factor of the total wavefunction.
Thus we can finally obtain the S-matrix.

3.1. Independent solutions

At x →∞, the independent solutions in the adiabatic representation should behave like

φ1(ρ) ∼ ρ±iν ∼ e∓ik1x and φ2(ρ) ∼ ρ±iµ ∼ e∓ik2x (ρ → 0). (27)

In the classically inaccessible region they correspond to exponentially growing functions, in
general,

φ1(ρ) ∼ exp
(|√a1|ρ

)
φ2(ρ) ∼ exp

(|√a2|ρ
)

(ρ →∞). (28)

Equation (27) follows from the fact that the diabatic potentials are asymptotically flat and the
coupling vanishes, while equation (28) can be obtained by solving the Schrödinger equation
with the diagonal adiabatic potential matrix (we note that the rotation angle in equation (6)
tends to a constant). If only the leading-order term is retained, then we have[

ρ2 d2

dρ2
+ ai

]
φi(ρ) � 0. (29)

In equation (28) the exponentially decreasing terms have been omitted, since they are only
subdominant in the region. Taking into account equations (27) and (28), we can represent the
wavefunction in equation (10) as

ψj(ρ) =
2∑

m,n=1

γmnI
(j)
mn (ρ) (30)

where

I (j)
mn (ρ) ≡

∫
Cmn

dp pF
(n)
j (p)Z(n)(ρp). (31)

Here F
(n)
j are derived from equation (19), using equations (12) and (13). The first index m

indicates which couple of symmetric branch cuts is wound around by the contour, while the
index n specifies in which complex half-plane the branch is located:

n = 1 Z(n) = H
(1)
−iν lower branch cut

n = 2 Z(n) = H
(2)
iν upper branch cut.

(32)
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Figure 1. Bessel transformation contours in the complex p-
plane. Two contours (Ci1, i = 1, 2) wind the branch cuts at
the lower complex half-plane of p and go to +i∞, while the
two others (Ci2, i = 1, 2) wind the branch cuts at the upper
half-plane and go to−i∞. The numbering of contours, Cij ,
corresponds to the Hankel functions, H(j), and the WKB
wavefunctions, F (j).

The case n = 1 (n = 2) corresponds to the contour tips at p = +i∞ (p = −i∞) as shown in
figure 1. From this figure and equations (10), (19) and (A5) it follows that

I (j)
mn =

(
I
(j)

m,3−n
)-
. (33)

This condition ensures the unitarity of the S-matrix. The saddle-point analysis, carried out in
the high-energy limit [14], proves that the main contribution to the integrals in equation (30)
comes from regions in the complex p-plane such that

z = ρp ∼ 0 for ρ → 0 (34)

and

|z| = |ρp| ∼ ∞ for ρ →∞.

This allows us to expand the Bessel function H±iν(z) in equation (10) (cf equations (A1) and
(A2) in the appendix). Equation (27) follows from the transformation based on H±iν(z) (or
alternatively on H±iµ(z) ). In the limit ρ →∞ the saddle points tend to

√
ai (cf equations (14)

and (24)), which gives equation (28). Thus the conditions in equations (27) and (28) can be
satisfied by our choice of contours and wavefunctions.

3.2. Wavefunction at x →−∞
In order to derive the wavefunction in the forbidden region, we perform the standard procedures,
i.e. analysis of the singularities, solution of the comparison equation and asymptotic matching
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[1, 7, 16]. The total wavefunction

.(ρ) =
(

φ1

φ2

)
(35)

should not contain exponentially growing terms at ρ → ∞. In order to satisfy this physical
condition we first evaluate the integrals I

(j)
nm (ρ) of equation (30) for ρ → ∞. To do this,

we first have to match the local solution of equation (15) at p ∼ √ai to the WKB solution
equation (19). The procedure is explained in appendices B and C, and the final expressions
of I

(j)
nm (ρ) are given in equations (D3) and (D4). Then we rotate the diabatic wavefunctions

ψj(x) given by equation (30) into the adiabatic ones φj (x) using the matrix in equation (6) (cf
equation (D5) in the appendix). To cancel the contribution of exponentially diverging terms
in adiabatic wavefunctions in equation (28), the following condition should be satisfied (cf
equation (D7) in the appendix):

γ12

γ11
= exp (iα1)

γ22

γ21
= exp (iα2) (36)

where

αi = −2

(
arg (/ (iδi)) + δ3−i ln (a2 − a1) + 1

2ν ln (−ai) + δi ln

(−ai
µ

))
. (37)

3.3. Wavefunction at x →∞
Evaluating integrals in equation (31) at ρ → 0, we find the total wavefunction

ψ1(ρ) = π
ρ iν

√
ν

ei(φ0+π/4) /(1 + iδ)(a2 − a1)
−iδ−1

/(1 + iδ1)/(1 + iδ2)

(−eπδ2γ11 + e−πδ2γ21
)

+π
ρ−iν

√
ν

e−i(φ0+π/4) /(1− iδ)(a2 − a1)
iδ−1

/(1− iδ1)/(1− iδ2)

(−eπδ2γ12 + e−πδ2γ22
)

(38)

and

ψ2(ρ) = −i
ρ iµ

√
µ

ei(φ0−δ ln(4ν)−π/4)/(−iδ)eπδ/2
(
e−πδ1 sh(πδ1)γ11 + e−πδ2 sh(πδ2)γ21

)

+i
ρ−iµ

√
µ

e−i(φ0−δ ln(4ν)−π/4)/(iδ)eπδ/2
(
e−πδ1 sh(πδ1)γ12 + e−πδ2 sh(πδ2)γ22

)
(39)

where / is the gamma function [15] and the phase factor

φ0 ≡ ν ln

(
e

2ν

)
(40)

comes from the expansion of Hankel and gamma functions (cf equations (A2) and (A4) in the
appendix).

The details of how to evaluate ψj(∞) are given in appendix E (cf equations (E4) and
(E6)).

4. Scattering matrix and non-adiabatic transition matrix

In this section we first derive the scattering matrix containing parameters of the present
exponential potential model. Then we evaluate the adiabatic scattering phase shifts in order
to subtract the non-adiabatic transition probability and dynamical phases, using the idea of
double passage. Finally, the total S-matrix can be put in a form which is free from the
particular parameters of our model.
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4.1. Scattering matrix

Let us first denote the adiabatic momenta,

ki(x) =
√
E − u

(a)
i (x) and ki ≡ lim

x→∞ ki(x). (41)

Then the scattering matrix in the present case is defined as

channel ψi

← 1
→−Sii

channel ψj

← 0
→−Sij

(42)

where the arrows mean
←

incoming wave
→

outgoing wave


 exp(∓ikjx)√

kj
or

exp(∓i
∫ x

xt
j
kj (x) dx)√
kj

(43)

and xt
j represents the turning point. While the plane waves in equation (43) are connected by

the scattering matrix, S(E), the latter adiabatic waves define the reduced scattering matrix,
SR(E).

The matrix S(E) can be deduced from 3(x)|x→∞ as explained below. In equations (38)
and (39) the four parameters γij are restricted by the two conditions from equations (36).
We impose one more restriction on γij in order to specify the only outgoing wave boundary
condition in the first channel (to obtain S2j elements) or in the second channel (to obtain S1j

elements). Thus all γij can be found up to a multiplicative constant and the S-matrix elements
are evaluated using equations (36), (38) and (39) as follows:

S11(E) = iexp
(
2i
[
δ ln (a2 − a1) + arg (/(iδ1)) + arg (/(iδ2))− arg (/(iδ))

])
× exp

(
2i
[−φ0 − ν ln(2

√
V )

]) (
peiα2 + (1− p)eiα1

)
(44a)

S12(E) = −i

√
δ1δ2

π

sinh (πδ1) sinh (πδ2) / (iδ1) / (iδ2)

sinh (πδ)
eπ(δ1−δ2)/2

× exp
(
i
[
δ ln (4ν (a2 − a1))− 2φ0 − (ν + µ) ln(2

√
V )

]) (
eiα2 − eiα1

)
(44b)

S21(E) = −i
π√
δ1δ2

exp
(
i
[
δ ln

(
4ν(a2 − a1)

)− 2φ0 − (ν + µ) ln(2
√
V )

])
sinh(πδ)/

(−iδ1
)
/
(−iδ2

) eπ(δ1−δ2)/2

×(eiα2 − eiα1
)

(44c)

and

S22(E) = i exp
(
2i
[−φ0 + δ ln(4ν) + arg(/(iδ))− µ ln(2

√
V )

]) (
peiα1 + (1− p)eiα2

)
(44d)

where

p = exp(−πδ2)
sinh(πδ1)

sinh(πδ)
. (45)

The S-matrix given above satisfies symmetry and unitarity (cf equations (F1)–(F7) in the
appendix). The total transition probability |S12|2 is given by

|S12(E)|2 = 4
exp(πδ) sinh (πδ1) sinh (πδ2)[

exp(πδ) sinh (πδ2) + sinh (πδ1)
]2 sin2 ( 1

2 (α2 − α1)
)
. (46)
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4.2. Double passage

With use of the idea of the double passage, the S-matrix can be expressed as a product of
the non-adiabatic transition matrix and the adiabatic propagation matrix [3, 7, 9, 10]. The
non-adiabatic transition matrix connects the WKB wavefunctions

1√
ki(x)

exp

(
i
∫ x

xs

ki(y) dy

)
(47)

from left to the right, both far from the reference point xs . It generally has the form

I(xs) =
( √

1− p exp(−iφ) −√p exp(−iψ)

√
p exp(iψ)

√
1− p exp(iφ)

)
(48)

where p is the non-adiabatic transition probability for one passage of the transition region, and
ψ and φ are the dynamical phases. If the turning points are well separated from the transition
region and the WKB approximation does not break, then the S-matrix is decomposed to have
the following double-passage form:

S11 = i exp(i(2(d1 − φ)−.12))
(
(1− p) ei.12 + p e−i.12

)
S22 = i exp(i(2(d2 + φ) + .12))

(
(1− p)e−i.12 + p ei.12

) (49)

and

S12 = S21 = −2 exp(i(d1 + d2))
√
p(1− p) sin(.12)

where

.12 = 71 −72 + ψ − φ. (50)

The quantities di are the adiabatic elastic scattering phase shifts and 7i are the adiabatic
scattering phases from the turning points to the reference point xs = Re x∗, where x∗ is the
complex crossing point (see equation (54) below). Our goal now is to subtract the parameters
p, φ and ψ from equations (44a)–(44d) using this double-passage formula. It is easy to see
that p of equation (45) is the non-adiabatic transition probability in equation (49), which has
the same form as in the attractive case. Indeed, in the case of asymptotically high energies
the transition probability should not depend on the sign of potential slopes. Comparing
equations (44a)–(44d) and (49) we can also identify .12 of equation (50) as

2.12 = α2 − α1. (51)

To obtain explicit expressions of φ and ψ it is necessary to evaluate the phase shift integrals
on the adiabatic potentials, di and 7i . The exact results cannot be obtained analytically but
we can obtain analytical results within the high-energy expansion. For this purpose we make
use of equation (22).

The adiabatic elastic scattering phase shifts are defined by

di ≡
(

lim
X→∞

∫ X

xt
i

√
E − u

(a)
i (x) dx −X

√
E − Ui

)
. (52)

The phase shifts between the reference point and the turning points are given as

7i ≡
∫ xs

xt
i

√
E − u

(a)
i (x) dx. (53)
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In order to represent the scattering matrix in the double-passage form we choose the reference
point as a real part of the complex crossing point of adiabatic potentials,

xs ≡ Re x∗ = − ln


 (U1 − U2)/(2|V |)√

1 +
(

1
2 (β1 − β2)

)2


. (54)

In addition to this we modify equation (22) to the following form:

∫ x

xt
j

√
E − u

(a)
j (y) dy =

∫ p
†
j (ρ)

√
cj

√
P0(p) dp −

∫ ρp
†
j (ρ)

iν

√
1 +

ν2

ξ 2
dξ (55)

and note that

p
†
1(ρ)

ρ→0−→
√
β1

p
†
2(ρ)

ρ→0−→
√
µ2 − ν2/ρ.

Equations (54) and (55) enable us to evaluate the phases in equations (52) and (53). The results
follow (cf equations (G1)–(G7) in the appendix)

d1 = ν ln ν − ν − 1
2ν ln |V | − 1

2ν ln |a1| − δ1 ln

∣∣∣∣a1

µ

∣∣∣∣ + δ1 − δ1 ln
√
δ1δ2 + δ2 ln

δ2

δ
(56)

d2 = µ ln µ− µ− 1
2µ ln |V | − 1

2µ ln |a2| + δ1 ln

∣∣∣∣a2

µ

∣∣∣∣− δ1 + δ1 ln
√
δ1δ2 − δ2 ln

δ2

δ
(57)

and

71 −72 = ν

2
ln

(
a2

a1

)
+ δ ln

a2

a1
+ δ1 − δ1 ln

δ1

µ
+ δ2 ln |a1| + (δ1 − δ2) ln

δ√
δ1δ2

−δ2 + δ2 ln
δ2

µ
− δ1 ln |a2| − Re

{∫ x∗

Re x∗
(k1(x)− k2(x)) dx

}
. (58)

4.3. The general S-matrix

Identifyingp of the S-matrix formula with that of the I-matrix we can find the dynamical phases.
First we substitute equations (56)–(58) into the double-passage formula in equation (49). The
dynamical phases follow when comparing the result with the S-matrix in equations (44a)–
(44d). We use the notation

γ (X) = X ln(X)−X − arg (/(iX)) (59)

in terms of which the dynamical phases result in

φ = γ (δ2)− γ (δ) (60)

and

ψ = γ (δ1)− γ (δ)− 2

[√
δδ2 +

δ1

2
ln

√
δ −√δ2√
δ +
√
δ2

]
. (61)

The phases ψ and φ, unlike from the previous S-matrix in equations (44a)–(44d), depend
only on the positive parameters δi . The same holds for the non-adiabatic transition probability
p in equation (45). Let us mention here the explicit dependence of δi on the parameters of
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the exponential model before introducing the dimensionless variables (cf the sentence below
equation (2)). As follows from equations (8) and (21),

δ �
√

2M

h̄α

(√
E − U2 −

√
E − U1

)
. (62)

Furthermore, we show that δi can be considered as being free from the particular parameters
of the exponential model.

We have proven above that the total S-matrix can be put into a general form

Sij (E) = lim
x→∞ exp

(−i(ki(∞) + kj (∞))x
)[

P(x, xs)I(xs; E)P(xs, x
t )

iP∗(xt , xs)I
t (xs; E)P∗(xs, x)

]
ij

(63)

where the diagonal matrix P represents the uncoupled adiabatic propagation,

Pij (b, a) = δij exp

(
i
∫ bj

aj

kj (y) dy

)
. (64)

Finally, the non-adiabatic transition matrix I is given by equation (48), with the parameters
p, φ and ψ defined in equations (45), (60) and (61). It in equation (63) is a transpose of I and
P∗ is a complex conjugate of the matrix in equation (64). The energy-dependent parameters
δi(E) are nothing but contour integrals of adiabatic momenta in the complex coordinate plane.
In the attractive case they have the following form [14]:

δ1 = 1

π
Im

{∫ x∗

xt
1

k1(x) dx −
∫ x∗

xt
2

k2(x) dx

}
(65)

and

δ2 = 1

π
Im

{∫ x∗

Re(x∗)
[k2(x)− k1(x)] dx

}
(66)

where xt
i are the turning points (complex in the attractive case) and x∗ is the crossing point

of adiabatic potentials in the complex plane. For the proof of equations (65) and (66) refer to
equations (H1)–(H5) in the appendix and figures 2–4.

Figure 2. Contours Li . The two contours
L1 and L2 define the parameters δi of
equations (65) and (66) in the complex
p-plane. These are shown both for the
repulsive case, L+

i (branch cuts on the
imaginary axis) and for the attractive case,
L−i (branch cuts on the real axis), (see
equation (H6)).
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Figure 3. Contours in the complex ρ2-plane (attractive
case). The two closed contours correspond to L−1 and
L−2 of figure 2 when transformed to the ρ2-plane. The
bold line is the contour for δ1, while the contour for
δ2 (thin line) winds around the complex crossing points
denoted by stars. The adiabatic momenta, integrated on
the respective parts of the contours, are denoted as k1 and
k2, and ti (i = 1, 2) denotes the corresponding turning
points −ν2/ci . Branch cuts of adiabatic potentials are
plotted as a broken line. The overall integration result,
δ = δ1 + δ2, is the sum of integrals of k1 and k2 on
two contours that encircle ρ2 = 0 (x = ∞) in opposite
directions.

Figure 4. Contours in the complex coordinate plane
(attractive case). The contours for δi in the x-plane.
Turning points xt

i are located out of the real axis. As a
result the integral for δ can be reduced to the integration
on the dotted contours. In the repulsive case Im xt

i = 0,
the complex conjugate turning points merge together, and
the sum of the two contour integrals equals zero.

In the repulsive case we have found (cf equations (H6)–(H13) in the appendix) that

δ1 = 1

π
Im

{∫ x∗

Re(x∗)
[k2(x)− k1(x)] dx

}
≡ δLZ (67)

and

δ2 = δ − δLZ (68)

where

δ = 1
2 (µ− ν) ≡ δRZ. (69)

The Rozen–Zener parameter in the above equation can be expressed as follows:

δRZ = 1

2π i

∮
∞

[k2(x)− k1(x)] dx (70)

as can be seen when introducing a new variable, z = e−x . Finally, based on the symmetries
between the attractive and repulsive case (cf equation (H7) in the appendix), the formulae in
equations (67) and (68) are equivalent to

δ1 = 1

π
Im

{∫ x∗

Re(x∗)
[k2(x + iπ)− k1(x + iπ)] dx

}
(71)
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and

δ2 = 1

π
Im

{∫ x∗

xt
1

k1(x + iπ) dx −
∫ x∗

xt
2

k2(x + iπ) dx

}
. (72)

These formulae have a very illustrative meaning. In figure 4 (attractive case) we can see
that the parameter δ = δ1 + δ2 is given by the two contour integrals of adiabatic momenta
between the adjacent complex turning points. In the repulsive case, however, the pairs of
turning points degenerate on the real axis (regardless of the exponential model) and the only
independent contour integral is that for δLZ . We found that this problem can be generally
solved by inverting the potential,

u
(a)
i (x)|attr = u

(a)
i (∞)− (

u
(a)
i (x)− u

(a)
i (∞)

)
(73)

and substituting the corresponding adiabatic momenta ki(x)|attr into equations (71) and (72)
instead of ki(x +iπ). It is well known in semiclassical analysis that the results for the attractive
and repulsive cases do not differ in the high-energy limit if we take

u
(a)
i (x)|attr = −u(a)

i (x)|rep. (74)

The advantage of the above formulae, however, is (a) that their validity does not require an
energy much greater than the asymptotic separation of adiabatic potential energy levels and (b)
that they can be used in a model-independent way. Such an achievement is quite substantial
as we demonstrate in the next section. This is due to the contour integral definition of the
substantial parameters δ1 and δ2 which enables us to apply the above formulae for energies
even quite significantly below the diabatic crossing point.

Figure 5. Contours in the complex ρ2-plane (repulsive case). (a) Integral for δ1. The full curve
corresponds to the contour L+

1 (cf equation (H2) with i = 1). The dotted curve shows how the
contour can be distorted without changing the integration result (see equation (H10)). The point
ρ2

0 corresponds to p
†
2 = 0 which does not contribute to δ1 (see equation (H4)). Stars denote the

adiabatic crossing points which are connected by a branch cut (broken curve), t1 and t2 are the
turning points. The contour for δ1 can be finally reduced to the double-dot-broken curve. (b)
Integral for δ2. Not only the same contour (double-dot-broken) as in (a) except that i = 2 in
equation (H2) but also the closed dotted contours arising from equations (H11) and (H4) contribute
to δ2.
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Figure 6. Accuracy of the semiclassical SR matrix. (a) The transition probability P(E) (see
equation (76)). (b) The scattering phase .(E) (see equation (77)). (c) The scattering phase 3(E)

(see equation (78)). In (a)–(c) the lower plot is a detail of the upper one. The potential parameters
are V1 = −30, V2 = −40, V = 20, U1 = 0 and U2 = −15, which represent a system with
large asymptotic energy level separation. That is why the condition in equation (75) is fulfilled for
the energy which is above the scale in this figure. The total transition probability (equation (76))
and the rescaled SR-matrix phases (equations (77) and (78)) are plotted against the dimensionless
energy. The full curve is the exact quantum solution and the circles show the analytical result from
equation (63). The energy of the diabatic crossing point is 45, while the energy at the reference
point (the average of adiabatic potentials) is ∼ 5.2.

5. Numerical examinations

We expect that the high energy is the critical factor for the accuracy of the present semiclassical
treatment (see equation (20)). It means

E >
(7U)2

δ2
δ→ 0 (75)

when we neglect quantities∼ δ2. However, we found that the results in equations (44a)–(44d)
are far more accurate than it could follow from equation (75). It is amazing that the theory
works even when the energy is below the crossing point of the diabatic potentials. Using the
general formulae in equations (65) and (66) we could extend the validity region of our results
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Figure 7. Accuracy of the semiclassical SR-matrix. The
same as in figure 6 except that we chose V1 = −0.1,
V2 = −0.1002, V = 0.005, U1 = 0 and U2 = −0.1.
This is an example of almost parallel potentials with small
asymptotic energy level separation. The energy of the
diabatic crossing point is 50, while the energy at the
reference point is ∼ 0.95.

to a larger range of energy. Particular examples are given in figures 6 and 7. The following
three quantities are shown in these figures:

P(E) = ∣∣SR
12(E)

∣∣2 (76)

.(E) = 1

π
arg

{
SR

11(E)

SR
22(E)

}
(77)

and

3(E) = 1

π
arg

{
SR

11(E)SR
22(E)

}
. (78)

The exact numerical solution (full line) is compared with our analytical solution (circles) from
equation (63). We note that

SR(E)ij = exp
(−i(di + dj )

)
S(E)ij . (79)

The phases of the reduced scattering matrix vary slowly with energy compared with those of
S(E). As it follows from equation (49), 3 is equal to±1 as long as the double-passage formula
is justified. . includes the quantum phases φ and ψ as well as the adiabatic phases 71 and
72. In figures 6 and 7 it can also be seen that the transition probability for asymptotically high
energy has a simple form,

|S12|2 ∼ sin2 (2θ(−∞)) sin2

(
1
2

√
E ln

a1

a2

)
(80)
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as follows from equation (46) in the limit δ → 0. In figure 6 the Stueckelberg oscillations
can be seen not only in the total transition probability, P(E), but also in the S-matrix phase,
.(E). In figure 7 these oscillations are very slow since the adiabatic potentials are almost
parallel and U1 − U2 is small.

The above comparison of exact and analytical values cannot be done, strictly speaking,
for the non-adiabatic transition matrix. This is because the reduced scattering matrix in the
form of double passage has only two independent parameters, P and .,

SR(E) =
(

i
√

1− P(E) exp(iπ.(E)/2) −√P(E)

−√P(E) i
√

1− P(E) exp(−iπ.(E)/2)

)
(81)

which cannot provide enough equations for the three parameters of the non-adiabatic transition
matrix, p, φ and ψ . In other words, for any non-adiabatic transition matrix I we can find a
group of matrices IU(ω; E),

U(ω; E) ≡
( ±√1− ω ∓√ω exp(−i(72 −71))

±√ω exp(i(72 −71)) ±√1− ω

)
(82)

0 < ω < 1, resulting in the same matrix S(E). There is only one phase factor in the above
matrix, 72(E)−71(E), which compensates the difference of adiabatic phase shifts between
the turning points and the reference point. If used in equation (63) instead of I, U yields the
same scattering matrix as I = 1.

6. Concluding remarks

In this work we have solved the exponential potential model by semiclassical methods. The
final expressions of the S-matrix and the non-adiabatic transition matrix are given in terms of
adiabatic potentials and the two parameters δ1 and δ2, which are defined by the general contour
integrals and are free from particular parameters of the exponential model. The expressions
for the non-adiabatic transition probability as well as the dynamical phases in terms of δ1 and
δ2 give a new link between the attractive and repulsive case. Because δ1 and δ2 are generally
defined by contour integrals of adiabatic momenta, the theory works well even at low energies.
An interesting oscillation of the total transition probability was found at energies lower than
the diabatic crossing point. This is because the adiabatic avoided-crossing point is much lower
than the diabatic one. Our semiclassical treatment can reproduce even this oscillation. The
present theory is expected to be applicable to a broader class of potential models which have
similar singularity structures in the complex plane.

The appendices provide useful mathematical descriptions that are sufficient for
understanding the results in sections 2–4.
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Appendix A. Hankel functions

First let us clarify what kind of Bessel functions we use for the four contour integrals. On the
contours asymptotically bound to the upper half of the complex p-plane the H

(1)
−iν(ρp) function

is used, while on those leading to the lower half-plane H
(2)
iν (ρp) denotes the transformation

kernel. Then the asymptotic form of the wavefunctions follows from the following expansions:
for ρ →∞ (z→∞) (corresponding to the closed channel region)

H
(1)
−iν(z) =

√
2

πz
e−πν/2 exp (i (z− π/4)) + O

(
z−3/2

)
(A1)

and

H
(2)
iν (z) =

√
2

πz
e−πν/2 exp (−i (z− π/4)) + O

(
z−3/2

)
(z→∞)

and for ρ → 0 (z→ 0) (corresponding to the open channel region)

H
(1)
−iν(z) = −

1

sinh(πν)

(
1
2z
)iν 1

/(1 + iν)

(
1−

(
1
2z
)2

1 + iν

) [
1 + O(z2) + O(exp(−πν))

]
(A2)

and

H
(2)
iν (z) = − 1

sinh(πν)

(
1
2z
)−iν 1

/(1− iν)

(
1−

(
1
2z
)2

1− iν

) [
1 + O

(
z2
)

+ O(exp(−πν))
]
.

In equation (A2) it is convenient to take(
1−

(
1
2z
)2

1± iν

)
� exp

(
iz2

4ν

)
(A3)

and to make the expansion series in ν,

arg (/(1 + iν)) = 1
4π + ν ln ν − ν + O(ν−1). (A4)

Finally, we give the semiclassical Hankel functions. Substituting Z(z) = y(z)/
√
z in

equation (11) we obtain the WKB form of y(z). Since ν2 
 1, the two independent solutions
read

H
(1,2)
∓iν (z) ∼ 1√

ν2 + z2
exp


±i

∫ z
√

1 +
ν2

ξ 2
dξ


. (A5)

Appendix B. Local solutions of equation (15)

Here we give the mathematical preliminaries of evaluating wavefunctions at ρ →∞, i.e. the
solution in the classically inaccessible region. We expand equation (15) at each singular point
of its solution (cf equation (13)), because all smoothly varying terms are effectively cancelled
by the highly oscillating transforming Hankel functions in equation (10). After finding the
local solutions we match them to the asymptotic WKB form.

Let us start with Whittaker’s standard form of confluent hypergeometric equation, i.e. in
our case

d2

dz2
f (z) +

(
−1

4
+ i

7

z

)
f (z) = 0 Im 7 = 0. (B1)



3378 L Pichl et al

The independent solutions of (B1) are given in terms of confluent hypergeometric functions
. and 3 as

f1(z) = z exp(−z/2).(1− i7, 2, z) (B2)

and

f2(z) = z exp(−z/2)3(1− i7, 2, z).

Taylor series to the order O(1/|z|) yield

f1(z) � zi7 exp(−z/2) exp(iπε)1−i7

/(1 + i7)
− z−i7 exp(z/2)

/(1− i7)
(B3)

and

f2(z) � zi7 exp(−z/2) ε ≡ sgn(Im z) exp(z) � 1

with the last relation indicating that p is still sufficiently close to the point of expansion. To
match (B3) directly to the WKB solutions of non-expanded Schrödinger equation we need to
introduce

f+(z) ≡ f2(z) � zi7 (B4)

and

f−(z) ≡ Qf1(z) + Rf2(z) � z−i7

where

R = /(−i7)

i7
exp (iπε)1−i7 . (B5)

Close to the origin it holds

.(1− i7, 2, z) � 1 + o(z) and 3(1− i7, 2, z) = 1

/ (1− i7)

1

z
+ o(ln(z)). (B6)

Thus only the z−1 singular term arising from 3 contributes 2π i (and the respective
multiplicative constants) to the integral of the type∫

dz

z
f±(z)H(κz) κ →∞. (B7)

Appendix C. Confluent hypergeometric integral formulae

The confluent hypergeometric function 3 which appears in equation (B1) is defined as,

3(a, c, ξ) = 1

2π i
exp(−aπ i)/(1− a)

∫ 0+

∞eiφ
e−ξ t ta−1(1 + t)c−a−1. (C1)

. is related to 3 by the Kummer relation

3(a, c, ξ) = /(c − 1)

/(a − c + 1)
.(a, c, ξ) +

/(c − 1)

/(a)
ξ 1−c.(a − c + 1, 2− c, ξ) (C2)

and we have

.(a, c, ξ) = 1 + o(ξ). (C3)
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Appendix D. Bessel–Fourier contour integrals at x → −∞

Equation (15) cannot be solved in the WKB form when x → −∞, since the saddle points
approach the singularities p = ±√|ai |. That is why we expand equation (15) to series, solve
it locally for p ∼ √ai and match to the asymptotic WKB form. From now on we assume
that the definition of

√
ai or
√
ci is chosen for each contour in accordance with the respective

branch cut (see figure 1). Substituting

zi = − 2iµ√
ai

(p −√ai) (D1)

we obtain (with the accuracy up to O(δi), O(zi))

d2f1

dz2
i

+

(
−1

4
+ i

δi

zi

)
f1 = 0. (D2)

The asymptotic form of solutions of local equation (D2) (see equation (B4)) corresponds to
that of the WKB solutions in equation (19). Thus they can be matched. Making use of
equations (12), (A1) and (B1)–(B7) we finally obtain

I (1)
mn(ρ) =

π√
µ

sn

δm/(isnδm)
(am − a3−m)isnδm |am|iν/2

∣∣∣∣amµ
∣∣∣∣
isnδm

e( 1
2 π(−ν+δm))

×exp
(|√am|ρ − πν/2

)√
2(

π |√am|ρ
)1/2 cm ≡ (−1)m−1 ρ →∞. (D3)

Since only the singularity contributes to the integral, from equation (12) it follows that

I (2)
mn (ρ) = (β1 − am) I

(1)
mn(ρ) ρ →∞. (D4)

Thus the adiabatic wavefunctions are obtained by rotating the diabatic ones

φ1(ρ →∞) = (γ11I
(1)
11 + γ12I

(1)
12 )(cos θ0 − (β1 − a1) sin θ0)

+(γ21I
(1)
21 + γ22I

(1)
22 )(cos θ0 − (β1 − a2) sin θ0) (D5)

and

φ2(ρ →∞) = (γ11I
(1)
11 + γ12I

(1)
12 )(sin θ0 + (β1 − a1) cos θ0)

+(γ21I
(1)
21 + γ22I

(1)
22 )(sin θ0 + (β1 − a2) cos θ0)

where

θ0 ≡ lim
x→−∞ θ(x).

It can be seen easily that

cos θ0 − (β1 − a1) sin θ0 ≡ 0 ≡ sin θ0 + (β1 − a2) cos θ0 (D6)

while the other terms in equation (D5) are non-vanishing and growing exponentially with ρ.
Since the adiabatic wavefunctions should vanish when x →−∞, we obtain the two conditions

γ21I
(1)
21 + γ22I

(1)
22 = 0 and γ11I

(1)
11 + γ12I

(1)
12 = 0. (D7)
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Appendix E. Bessel–Fourier contour integrals at x → ∞

The WKB solution (19) of the Schrödinger equation (15) in the approximation (20) has the
form (cf equations (13) and (19))

F
(n)
1 (p) = 1√

µ

(
p2 − a1

)∓iδ1−1 (
p2 − a2

)∓iδ2−1
n = 1, 2. (E1)

Making use of the Bessel function expansions (cf equations (A2) and (A4)) we obtain

I (1)
mn(ρ → 0) = ρ icnν

√
µ

eicn(π/4−φ0)

∫
Cmn

(p2 − a1)
∓iδ1−1(p2 − a2)

∓iδ2−1p dp. (E2)

This integral can be reduced to the confluent hypergeometric function integral of equation (C1)
by means of the substitution

tm = p2 − am

a3−m − am
. (E3)

Evaluating the confluent hypergeometric functions at zero argument (see equations (C2) and
(C3)) we obtain

I (1)
mn(ρ → 0) = −πcm

ρ icnν

√
µ

eicn(φ0+π/4) /(1 + icnδ)(a2 − a1)
−icnδ−1

/(1 + icnδ1)/(1 + icnδ2)
. (E4)

When evaluating I (2)
mn , the integrand in equation (E2) differs only by

β1 − p2 = cm(a2 − a1)(tm + δm/δ). (E5)

Thus in the case of ψ2 the leading-order terms coming from equation (C2) cancel. This is the
reason why the ρ2 term of equation (A3) must be retained here. It comes from equations (A2),
(A3), (C1), (C2), and gives the difference between ρ iν and ρ iµ. The final result is

I (2)
mn (ρ → 0) = −cn ρ

icnµ

√
µ

eicn(φ0−δ ln(4ν)−π/4)eπδ/2/(−icnδ)e
−πδm sh(πδm). (E6)

Appendix F. Proof of the unitarity of S-matrix

Using the following identities:

/(1− iδ) = −iδ/(−iδ) (F1)

|/(iδ)|2 = π

δ sh(πδ)
(F2)

and

(a2 − a1) = δ√
δ1δ2

(F3)

we can find that the S-matrix in equations (44a)–(44d) satisfies

S12 = S21 |S11|2 = |S22|2 and |S11|2 + |S12|2 = 1. (F4)

The last unitarity condition to be proven is

S11S
∗
12 + S12S

∗
22 = 0 (F5)
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or in other words

arg (S11) + arg (S22)− 2 arg (S12) = (2k + 1)π k ∈ Z. (F6)

Taking into account the extracted prefactors in the S-matrix of equations (44a)–(44d) it is
sufficient to prove that

arg
[
sh(πδ1) eiα1 + sh(πδ2) eπδeiα2

]
+ arg

[
sh(πδ1) eiα2 + sh(πδ2) eπδeiα1

]
= 2 arg

[
eiα2 − eiα1

]
+ (2k + 1)π (F7)

which is just an algebra.

Appendix G. Adiabatic scattering phase shifts

First we give an account of real definite integrals∫ x

ε

dx

x − d

√
x − ε

x
= ln |x − d| − ln |d| + ε

2d
(1− ln |ε| − ln |x − d|

+ ln |d| + ln |x| + 2 ln 2) + O(ε2) (G1)∫ x

ε

dx

(x − d)(x − e)

√
x − ε

x
= 1

e − d
(ln |d| − ln |x − d| − ln |e| + ln |x − e|) + O(ε) (G2)

and ∫ x

iν

√
1 +

ν2

ξ 2
dξ = ν +

ν

2
ln

x

ν
+

x2

4ν
+ O(ν−3/2). (G3)

Manipulating the second term in equation (55) yields (note that ci < 0)∫ p

√
ci

√
(p2 − c1)(p2 − c2)

(p2 − a1)(p2 − a2)

dp

p
= 1

2

∫ p2−ai

ci−ai

dx

x + ai

√
x − (ci − ai)

x

√
1− c3−i − a3−i

x − (a3−i − ai)
.

(G4)

Evaluating the phase shifts di and 7i we can expand the second square root in equation (G4)
with respect to ai − ci , which is proportional to the inverse of energy. Using identities
in equations (G1)–(G3), we can evaluate all the phase shifts. The results are given in
equations (56)–(58). The last term in equation (58) originates from the following:

71 −72 = Re

{∫ x∗

xt
1

k1(x) dx −
∫ x∗

xt
2

k2(x) dx −
∫ Re x∗

x∗
(k1(x) + k2(x)) dx

}
. (G5)

The first two integrals in equation (G5) follow from equations (G1)–(G3), while the last one
can be evaluated by Taylor expansion,

kj (x) =
√
E − ua

j (x) �
√
E − ua

j (x)

2
√
E

(G6)

since the last integration path is separated from the turning point. Then the exact result is the
same as in the attractive case [14], i.e.

1

2
√
E

Re

{∫ xc

Re xc

(ua
1(x)− ua

2(x)) dx

}
= 2

√
δδ2 + δ1 ln

√
δ −√δ2√
δ +
√
δ2

. (G7)
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Appendix H. Contour integrals to define δj

The parameters δ1 and δ2 introduced in equation (21) are defined as [14]

δj = 1

2π i

∮
Lj

√
P0 dp (H1)

where the Lj th contour encircles the branch cut between
√
aj and

√
cj in the positive direction.

For details see figure 2. Equation (21) is a result of the high-energy limit of equation (H1), when
we expand

√
P0 in terms proportional to aj−cj . Let us show now that equation (H1) can be put

into the form of an adiabatic momentum contour integral. We start with equations (22) and (25)
and the easier attractive case. Then it suffices to find contours in the ρ2-plane corresponding
to the contours Lj in the p-plane (using equation (24)),

ρ2 = P0(p
†
j )−

ν2

p
†
j

2 . (H2)

The transformed contours are shown in figure 3. None of these closed contours encircles
ρ2 = 0 or ρ2

0 , the solution of

p
†
j (ρ0) = 0 (H3)

given by

ρ2
0 = −

4β1(U1 − U2)

β1β2 − 1
(j = 1, (2) attractive (repulsive) case) (H4)

that is why the last integral in equation (22) on such a contour must vanish,

∮ √
1 +

ν2

ξ 2
dξ ≡ 0. (H5)

Since the contours Li in the ρ2-plane are symmetric with respect to the real axis and the
integrand in equation (H1) is the complex conjugate with respect to this axis, the real part of
the integral must vanish and the contribution of the imaginary part coming from the upper and
lower half-plane doubles. Then equations (65) and (66) follow from figure 3 and equations (22)
and (H5). Note that the integration path in the x-plane is just distorted in a way which does
not change the result (see figures 3 and 4).

Though in the repulsive case the contours for δ1 and δ2 in the p-plane (see figure 2) are
very similar to those in the attractive case, the general expressions in terms of contour integrals
in the x-plane are quite different. Let us start with a note on the difference between the two
cases,

Vi →−Vi βi →−βi ai →−a3−i and ci →−c3−i . (H6)

As a result,

δi → δ3−i (H7)

both for the approximate expression of δi from equation (21) and the exact one from
equations (16) and (H1). The change of the sign in equation (H6) is equivalent to

x → x ± iπ (H8)

leaving the pre-exponential constants Vi (i = 1, 2) unchanged.
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The contours for δ1 and δ2 in the ρ2-plane (repulsive case) are shown in figure 5. Both of
them encircle zero, thus before they can be moved through it, the behaviour of the integrand
at this point must be clarified. We have

√
P0(pj )

dpj

d(ρ2)
= (−1)j

ν2 − µ2

4p2
j ρ

4

p2
3−j − β2√

1 +
(
(β1 − β2)/2− (µ2 − ν2)/2ρ2

)2

√
zp2 + ν2. (H9)

From the above equations it follows that

√
P0(p1)

dp1

d(ρ2)
= C + O(ρ2) C ∈ Z (H10)

and

√
P0(p2)

dp2

d(ρ2)
= − µ

2z
+ O(1). (H11)

As a result of equation (H11) the zero has a contribution to δ2,

1

2π i

∮
0

√
P0(p2)

dp2

d(ρ2)
dρ2 = µ

2
. (H12)

While the contour for δ1 avoids ρ2
0 (the contour L1 in the p-plane can go around

√
β1 instead

of the turning point
√
c1), the contour for δ2 does not (the contour L2 in the p-plane can go

around p = 0 which corresponds to ρ2
0 ). That is why there is one more contribution to δ2 from

the integral in the complex ρp(ρ)-plane,

1

2π i

∮
ρ0p1(ρ0)

√
1 +

ν2

ξ 2
dξ = −ν

2
. (H13)

The contributions to δ2 arising from the zero ρ2 = 0 and from the second term in equation (22)
finally give

δ = δ1 + δ2 = 1
2 (µ− ν). (H14)

The contour integrals encircling the complex crossing points in the ρ2-plane both for δ1 and
δ2 have the form of equation (66), differing just by a sign due to the opposite fixing of branch
cuts (in figure 5(a)) the integrand is k1, while in figure 5(b) the integrand is k2).

The alternative way to examine the contours is as follows. We start with equations (22)
and (25) which can be modified to give the following form:

∮
Lj

P0(p) dp =
∮ √

E − u
(a)
j (ρ2)

d(ρ2)

ρ2
− ν

2


ln

1 + 2
√
E − u

(a)
j

1− 2
√
E − u

(a)
j


. (H15)

The closed contours are always oriented in the positive direction and encircle zero in the ρ2-
plane. Evaluating the second integral in equation (H15) by the residue theorem and taking into
account that [ ] = 2iπ we obtain the same results as above.
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